Application of the Seismic Reflection Method in Mineral Exploration and Crustal Imaging Contributions to Hardrock Seismic Imaging

نویسنده

  • OMID AHMADI
چکیده

Ahmadi, O. 2015. Application of the Seismic Reflection Method in Mineral Exploration and Crustal Imaging. Contributions to Hardrock Seismic Imaging. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1269. 76 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9290-8. The seismic reflection method has been used extensively in mineral exploration and for imaging crustal structures within hardrock environments. In this research the seismic reflection method has been used and studied to address problems associated with hardrock settings. Papers I and II, address delineating and imaging a sulfide ore body and its surrounding rocks and structures in Garpenberg, central Sweden, at an active mine. 3D ray-tracing and finite-difference modeling were performed and the results suggest that although the detection of the ore body by the seismic reflection method is possible in the area, the presence of backfilled stopes in the mine makes seismic imaging of it difficult. In paper III the deeper structures of the Pärvie fault system in northern Sweden were revealed down to about 8 km through 2D seismic reflection profiling. The resulting images were interpreted using microearthquake data as a constraint. Based on the interpretation, some locations were suggested for future scientific deep drilling into the fault system. In paper IV, the seismic signature of complex geological structures of the Cue-Weld Range area in Western Australia was studied using a portion of a deep 2D seismic reflection profile. The pronounced reflections on the seismic images were correlated to their corresponding rock units on an available surface geological map of the study area. 3D constant velocity raytracing was performed to constrain the interpretation. Furthermore, the proposed structural model was tested using a 2D acoustic finite-difference seismic modeling method. Based on this study, a new 3D structural model was proposed for the subsurface of the area. These studies have investigated the capability of the seismic reflection method for imaging crustal structures within challenging hardrock and complex geological settings and show some its potential, but also its limitations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving seismic image in complex structures by new solving strategies in the CO-CRS and the CO-CDS methods

Conventional seismic imaging possesses problem in exposing structural detail in complex geological media. Nevertheless, some recently introduced methods reduce this ambiguity to some extent, by using data based imaging operator or emancipation from the macro-velocity model. The zero offset common reflection surface (ZO-CRS) stack method is a velocity independent imaging technique which is frequ...

متن کامل

Optimizing design of 3D seismic acquisition by CRS trace interpolation

Land seismic data acquisition in most of cases suffers from obstacles in fields which deviates geometry of the real acquired data from what was designed. These obstacles will cause gaps, narrow azimuth and offset limitation in the data. These shortcomings, not only prevents regular trace distribution in bins, but also distorts the subsurface image by reducing illumination of the target formatio...

متن کامل

An improvement in RTM method to image steep dip petroleum bearing structures and its superiority to other methods

In this paper, first the limitations of the ray-based method and the one-way wave-field extrapolation migration (WEM) in imaging steeply dipping structures are discussed by some examples. Then a new method of the reverse time migration (RTM), used in imaging such complex structures is presented. The proposed method uses a new wave-field extrapolator called the Leapfrog-Rapid Expansion Method (L...

متن کامل

A closer look at rock physics models and their assisted interpretation in seismic exploration

Subsurface rocks and their fluid content along with their architecture affect reflected seismic waves through variations in their travel time, reflection amplitude, and phase within the field of exploration seismology. The combined effects of these factors make subsurface interpretation by using reflection waves very difficult. Therefore, assistance from other subsurface disciplines is needed i...

متن کامل

Attenuation of spatial aliasing in CMP domain by non-linear interpolation of seismic data along local slopes

Spatial aliasing is an unwanted side effect that produces artifacts during seismic data processing, imaging and interpolation. It is often caused by insufficient spatial sampling of seismic data and often happens in CMP (Common Mid-Point) gather. To tackle this artifact, several techniques have been developed in time-space domain as well as frequency domain such as frequency-wavenumber, frequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014